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Introduction 1
Minimal codewords in linear codes have been applied for:

test sets in "gradient-like" decoding algorithms:
Tai-Yang Hwang, "Decoding Linear Block Codes for
Minimizing Word Error Rate", IEEE Trans. on
Information Theory vol. 25, November 1979, pp.
733-737;
A. Barg, "Complexity Issues in Coding Theory", in
Handbook of Coding Theory (Eds. V. Pless and W.
Huffman), Amsterdam, Elsevier Science B.V., 1998.
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to describe minimal access structure in Secret-Sharing
Schemes based on these codes:
J. Massey, "Minimal Codewords and Secret Sharing", in
Proc. Sixth Joint Swedish-Russian Workshop on Inf.
Theory, Molle, Sweden, 1993, pp. 246-249.
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Introduction 2

The problem of describing the set of minimal codewords
has been solved:

completely, for q−ary Hamming code and the second
order binary Reed-Muller code in [1];
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Introduction 2

The problem of describing the set of minimal codewords
has been solved:

completely, for q−ary Hamming code and the second
order binary Reed-Muller code in [1];

partially, for two-error-correcting binary BCH codes and
rth order binary Reed-Muller code, in [5] and [6],
respectively;

by computer assistance, for some third-order binary
Reed-Muller codes in [7] and [13].
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Introduction 3

Here, we return to the problem for the second order binary
Reed-Muller code solved in [1].
A proof of geometric nature (suggested by Juriaan Simonis)
was exhibited in:
A.Ashikhmin and A. Barg, "Minimal Vectors in Linear
Codes", IEEE Trans. on Information Theory vol. 44,
September 1998, pp. 2010-2017.
In this work, it is presented another comprehensive proof
based on Dickson’s Theorem.
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Background 1

DEFINITION 0.1. A support of a binary vector c of length n, denoted by
supp(c), is defined as the subset of c’s nonzero coordinates. A support
of a Boolean function is the support of its truth table.

DEFINITION 0.2. A nonzero codeword c of a binary linear code C is
called minimal in C if supp(c) does not cover the support of another
nonzero codeword. Otherwise, c is called non-minimal.
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Background 2
Basic properties of minimal codewords

Proposition 0.3. ([1],[4])

(1) If c is minimal codeword in a linear [n, k]-code then its
weight satisfies wt(c) ≤ n − k + 1.

(2) Any non-minimal codeword c in a binary linear code can be
represented as a sum of two codewords c1 and c2 having
disjoint supports included in supp(c).

(3) The automorphisms of a linear code preserve the property of
the codewords to be minimal or not.

(4) All codewords of a binary linear code with weight < 2dmin

are minimal.
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Background: MacW&Sl, Ch. 15.2
the second-order Reed-Muller code RM (2,m):

codewords are truth tables (binary vectors of length
2m) of Boolean functions of degree ≤ 2 in
v = v1, v2, . . . , vm.
typical codeword is given by: S(v) = vQvT + Lv + ǫ,
where Q is an upper triangular binary m × m matrix,
L is a binary vector of length m, and ǫ is 0 or 1.
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Background: MacW&Sl, Ch. 15.2
the second-order Reed-Muller code RM (2,m):

codewords are truth tables (binary vectors of length
2m) of Boolean functions of degree ≤ 2 in
v = v1, v2, . . . , vm.
typical codeword is given by: S(v) = vQvT + Lv + ǫ,
where Q is an upper triangular binary m × m matrix,
L is a binary vector of length m, and ǫ is 0 or 1.

A coset of RM (1,m) in RM (2,m) is characterized by
matrix Q or alternatively (as it turns out) by the binary
symmetric matrix B = Q + QT with zero diagonal. B is
called symplectic matrix and the weight-distribution of
the coset depends only on the rank of B.
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Background: Dickson’s theorem
(1) If B is a symplectic matrix of rank 2h, then there
exists an invertible binary matrix R such that RBRT

has zeros everywhere except on the two diagonals
immediately above and below the main diagonal, and
there has 1010 . . . 100 . . . 0 with h ones (0 < h ≤ ⌊m/2⌋).

(2) Any quadratic function becomes:
T(y) =

∑h
i=1

y2i−1y2i + L1(y) + ǫ under the
transformation y = vR−1 determined by R from Part
(1). Moreover y1, . . . , y2h are linearly independent.

(3) If L1(y) is linearly dependent on y1, . . . , y2h, by an
affine transformation T(y) can be written as:
∑h

i=1
x2i−1x2i + ǫ1, ǫ1 = 0 or 1, where x1, . . . , x2h are

linearly independent and each xi is a linear form in
y1, . . . , y2h,1.
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Background 5
Weight-distribution of cosets of RM (1,m) in RM (2,m).

Theorem 0.4. If the symplectic matrix determining coset B of
RM (1,m) in RM (2,m) has rank 2h then the weight distribution
of B is as follows:

Weight Number of Vectors

2m−1 − 2m−h−1 22h

2m−1 2m+1 − 22h+1

2m−1 + 2m−h−1 22h
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Background 5
Weight-distribution of cosets of RM (1,m) in RM (2,m).

Theorem 0.6. If the symplectic matrix determining coset B of
RM (1,m) in RM (2,m) has rank 2h then the weight distribution
of B is as follows:

Weight Number of Vectors

2m−1 − 2m−h−1 22h

2m−1 2m+1 − 22h+1

2m−1 + 2m−h−1 22h

Corollary 0.7. The number of codewords of weight 2m−1 in the

cosets having rank 2h is equal to A2m−1±2m−h−1(2m−2h+1 − 2),
where Aw denotes the number of codewords of weight w.
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Background 6

Weight-distribution of minimal codewords in RM (2,m).

Proposition 0.8. (Ashikhmin&Barg ACCT’94): Let Mw the number
of minimal codewords of weight w in RM (2,m). Then:

Mw = 0 for w = 2m−1 + 2m−1−h, h = 0, 1, 2 .

otherwise, Mw = Aw, except for the case w = 2m−1, where

Mw =
∑⌊m/2⌋

h=2
A2m−1−2m−h−1(2m−2h+1 − 2)
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Sketch of the proof 1

Lemma 0.9. The rank of symplectic matrix corresponding to the
sum of two codewords of RM (2,m) is not greater than the sum of
the ranks of symplectic matrices associated with these codewords.

Y.Borissov, IMI – p. 12/18



Sketch of the proof 1

Lemma 0.10. The rank of symplectic matrix corresponding to the
sum of two codewords of RM (2,m) is not greater than the sum of
the ranks of symplectic matrices associated with these codewords.

The smallest two nonzero weights in RM (2,m) are:
w1 = 2m−2 (h = 1) and w2 = 2m−1 − 2m−3 (h = 2).
By Proposition 0.3 Part (2), non-minimal codewords
could exist for weights:
2m−1 + 2m−h−1 ≥ w1 + w2 (h = 0, 1, 2) and 2w1 = 2m−1.
Accordingly the proof can be split into two parts.
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Sketch of the proof 2
"Non-minimality" of codewords of weights
2m−1 + 2m−h−1:

h = 0, all-one vector 1 of length 2m – non-minimal.
h = 1, affine equivalent to y1y2 + 1, all non-minimal by
Proposition 0.3 Part (1) for RM(2, 2).
h = 2, affine equivalent to y1y2 + y3y4 + 1, all
non-minimal by the same reasoning for RM(2, 4).
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"Non-minimality" of codewords of weights
2m−1 + 2m−h−1:

h = 0, all-one vector 1 of length 2m – non-minimal.
h = 1, affine equivalent to y1y2 + 1, all non-minimal by
Proposition 0.3 Part (1) for RM(2, 2).
h = 2, affine equivalent to y1y2 + y3y4 + 1, all
non-minimal by the same reasoning for RM(2, 4).

"Non-minimality" of codewords of weight 2m−1. Due to
Lemma 0.9, only 3 cases should be considered:

affine equivalent to y1, all non-minimal since
y1 = y1y2 + y1(y2 + 1).
affine equivalent to y1y2 + y3, all non-minimal by
Proposition 0.3 Part (1) for RM(2, 3).
affine equivalent to y1y2 + y3y4 + y5, all minimal!!!
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The End

THANK YOU!
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